apagón
Estabilidad de la red eléctrica: tensión y frecuencia

Texto:
Juan José García Pajuelo, Director Técnico de la Unidad de Energía, Arram Consultores
Pablo Jiménez Gutiérrez, Ingeniero Industrial, Arram Consultores
INTRODUCCIÓN
El pasado 28 de abril de 2025, un apagón eléctrico de gran alcance afectó repentinamente a la mayor parte de España y Portugal, provocando interrupciones en el suministro eléctrico que impactaron tanto a infraestructuras críticas como a servicios esenciales. Aunque la duración del corte fue breve en muchas zonas (de unos minutos a poco más de una hora), su magnitud y la sincronía entre ambos países generaron gran preocupación tanto en ámbitos institucionales como técnicos. Este incidente ha vuelto a poner sobre la mesa la vulnerabilidad de los sistemas eléctricos interconectados y la necesidad de revisar y reforzar los mecanismos de protección, respuesta y recuperación ante fallos en la red. Todo esto ocurre en un contexto de transición energética, digitalización e integración creciente de energías renovables, que supone nuevos desafíos para la estabilidad del sistema.
Eventos como el del 28 de abril son clave para el análisis técnico, la prevención de futuros incidentes y la mejora de la resiliencia de las infraestructuras eléctricas. A continuación, se examina con detalle lo sucedido y las implicaciones para el futuro del sistema eléctrico.
1.ANÁLISIS GENERAL DE LA GENERACIÓN Y DEMANDA
En el sistema eléctrico español, es fundamental que la generación y la demanda estén equilibradas en todo momento, ya que la electricidad no se puede almacenar fácilmente a gran escala. Red Eléctrica de España (REE) es responsable de coordinar esta tarea mediante predicciones precisas de la demanda, considerando el consumo histórico, la hora del día, la meteorología y eventos excepcionales.

Fuente: Red Eléctrica de España.
A partir de estas predicciones se diseña un plan de producción, conocido como despacho de generación, que determina qué tecnologías se utilizan para cubrir la demanda en cada momento. Las energías renovables como son la solar, eólica e hidráulica, tienen prioridad porque su coste de producción es bajo y no generan emisiones contaminantes. Sin embargo, su disponibilidad depende de factores externos, como el viento y el sol, lo que puede introducir variabilidad.
La energía nuclear ofrece una base constante y estable, mientras que los ciclos combinados de gas natural son tecnologías flexibles que pueden ajustarse a la variación de la demanda. Cuando la demanda real no coincide con la prevista, REE recurre a ajustes en tiempo real mediante centrales de respuesta rápida, como las hidráulicas o de gas, e interconexiones internacionales con Francia, Portugal o Marruecos.
El incremento de la generación renovable, aunque esencial para la sostenibilidad ambiental, plantea nuevos retos técnicos. La variabilidad del viento y del sol obliga a mejorar la capacidad de predicción, aumentar la flexibilidad del sistema e invertir en tecnologías de almacenamiento energético, como baterías o bombeo hidráulico reversible. Estas soluciones permiten almacenar la energía excedente y liberarla cuando es necesaria, contribuyendo a mantener la estabilidad del sistema.
Así, el sistema eléctrico español funciona como un engranaje dinámico y preciso, donde la sincronización entre generación y demanda es esencial para garantizar la continuidad del suministro y avanzar hacia un modelo energético más sostenible y resiliente.
2.LOS SUCESOS DEL 28 DE ABRIL: QUÉ OCURRIÓ
El 28 de abril de 2025 mostró un perfil eléctrico muy característico de un día primaveral en España, con cielos despejados y una fuerte presencia de energías renovables, especialmente la solar. La gráfica de generación y demanda de ese día muestra con claridad cómo se comporta el sistema eléctrico en un contexto de transición energética, en el que las fuentes limpias tienen un peso creciente pero aún requieren respaldo en determinadas franjas horarias. Sin embargo, este día se produjo un colapso casi instantáneo del sistema eléctrico, que sorprendió por su magnitud.

Fuente: App redOS (Red Eléctrica de España)

Llegados a este punto, cualquiera se haría la misma pregunta… ¿cómo es posible, que uno de los sistemas eléctricos más seguros del mundo pudiera caerse en cuestión de segundos?
Aunque los detonantes aún no se conocen con exactitud, los tres eventos clave que desencadenaron el apagón fueron los siguientes:
12:33 h: Se desconectaron casi simultáneamente tres puntos críticos de generación eléctrica en el suroeste de España, donde ya se habían detectado grandes fluctuaciones de tensión. En apenas 20 segundos, se perdieron más de 2,2 GW de potencia, lo que provocó una caída abrupta de la frecuencia en la red y un aumento de la tensión.
Desconexión internacional: Francia se aisló automáticamente del sistema eléctrico ibérico como medida de protección frente a la inestabilidad. Esta desconexión dejó a España y Portugal sin respaldo externo, agravando aún más la falta de equilibrio y aumentando la vulnerabilidad de la red.
Desconexión en cascada: La pérdida inicial de generación y la ausencia de apoyo externo provocaron una desconexión en cascada de otras plantas generadoras, incluyendo centrales síncronas que se apagaron automáticamente por seguridad. En solo cinco segundos, se perdieron 15 GW de generación, lo que equivalía al 60% de la demanda en ese momento.
El sistema eléctrico español operaba con baja inercia ese día, debido a la alta penetración de energías renovables y la menor presencia de generación síncrona (como la nuclear o el gas). Esta baja inercia redujo drásticamente la capacidad de la red para absorber perturbaciones y estabilizarse, facilitando así la propagación de las desconexiones en cascada.
3.RESPUESTA DE LAS PLANTAS FOTOVOLTAICAS (PFV)
Para aclarar si la generación renovable fue responsable directa del apagón, es esencial comprender cómo responden las plantas fotovoltaicas (PFV) ante perturbaciones como las de ese día. Aunque la alta presencia de renovables y la baja inercia contribuyeron a la inestabilidad general, las PFV no fueron la causa directa del colapso.
El origen real del apagón fueron las bruscas variaciones de tensión y frecuencia que afectaron a grandes nudos eléctricos en el sur de España, propagándose rápidamente al resto de la red ibérica. La desconexión automática de las plantas generadoras fue un mecanismo de seguridad diseñado para proteger sus equipos y evitar daños mayores en las instalaciones, que habrían supuesto pérdidas económicas millonarias y un impacto aún más severo en la economía nacional.
La ministra para la Transición Ecológica y Reto Demográfico, Sara Aagesen, confirmó que la energía solar fotovoltaica no fue la causante directa del apagón. Las PFV, como el resto de plantas generadoras, están reguladas por la Norma Técnica de Supervisión (NTS) y la Orden TED 749/2020.
Según estas normas, las plantas renovables pueden operar un máximo de 60 minutos cuando la tensión varía ±10%, con tiempos de respuesta muy rápidos (menores a dos segundos). Para la frecuencia, se permite operar hasta 30 minutos cuando varía ±5%.
Si se superan estos límites, la normativa permite a las plantas desconectarse automáticamente para proteger sus equipos, especialmente las instalaciones basadas en electrónica de potencia (como las PFV), que son muy sensibles a las variaciones de frecuencia y tensión.
Las simulaciones realizadas (ver ilustraciones) muestran cómo las PFV, gracias a los inversores grid following, tienen gran capacidad de respuesta y se adaptan casi de forma instantánea a cambios bruscos en tensión y frecuencia. No obstante, cuando las perturbaciones superan los márgenes de seguridad técnica establecidos por la normativa, las plantas están obligadas a desconectarse. Este comportamiento, aunque protege los equipos, contribuyó a la desconexión masiva que amplificó el apagón.

Fuente: Simulación mediante software Digsilent Power Factory.

Fuente: Simulación mediante software Digsilent Power Factory.
4.CONCLUSIONES
El apagón del 28 de abril puso en evidencia que la alta penetración de renovables y la baja inercia del sistema eléctrico español generan vulnerabilidades ante perturbaciones bruscas e inesperadas. Aunque las plantas fotovoltaicas no causaron directamente el apagón, su desconexión masiva amplificó los efectos y aceleró la caída generalizada del sistema.
Este evento resalta la necesidad urgente de seguir desarrollando e integrando tecnologías de almacenamiento energético, como baterías, bombeo hidráulico o hidrógeno verde, que complementen a las fuentes renovables y ofrezcan la estabilidad y flexibilidad necesarias para una red eléctrica cada vez más compleja y dinámica. Además, la generación síncrona, como la nuclear o las plantas de gas, seguirá siendo esencial para aportar la inercia requerida y mantener la seguridad del sistema. Tecnologías complementarias como los STATCOM también pueden ayudar a estabilizar la red y a mitigar estos riesgos.
En suma, aunque las energías renovables son la base de un sistema más limpio y eficiente, su integración debe realizarse junto a soluciones de almacenamiento y generación síncrona que garanticen la seguridad y fiabilidad del sistema eléctrico, asegurando así una transición energética justa, equilibrada y segura.
Castilla-La Mancha no tuvo protagonismo en el “rearme” del sistema eléctrico español tras el apagón al estar la Central de Trillo en su 37ª recarga programada

El apagón, inédito en su magnitud y duración, que se produjo a las 12,33 horas del pasado lunes 28 de abril en toda España y Portugal, deja muchas lecturas e interrogantes aún sobre la actividad y comportamiento del sistema eléctrico español. En apenas cinco segundos, el 60% de la energía que se estaba produciendo en el país, unos 15 Gigawatios, desapareció- De repente. Hay que tener que cuenta que una de las claves de cualquier sistema eléctrico es la adecuación entre la oferta y la demanda. Si no casan ambas, siempre hay problemas.
Según asegura la propia Red Eléctrica de España (REE), que gestiona la red eléctrica nacional, “dado que la energía en forma de electricidad no puede almacenarse en grandes cantidades, para satisfacer todas las necesidades eléctricas es necesario producir la misma cantidad que se consume. Esto requiere un equilibrio constante entre la demanda y la generación o inyección de electricidad en cualquier momento del día. Para lograr este equilibrio, realizamos pronósticos de demanda de electricidad en diferentes períodos de tiempo para cada hora del día utilizando modelos predictivos estadísticos inteligentes que consideran múltiples variables, incluidos factores importantes como patrones de trabajo y condiciones climáticas»·. Con un 60% de la energía generada desaparecida en cinco segundos era imposible evitar el apagón. No había tiempo ni margen para enganchar al sistema a nuevas unidades productivas para reestablecer el equilibrio.
Los sistemas eléctricos nacionales de toda la Unión Europea funcionan con una misma frecuencia de 50 hercios (Hz). Para evitar problemas e incluso un colapso del mismo, ex imprescindible que exista un equilibrio dinámico entre generación y demanda. Que nadie se quede sin la electricidad que demanda pero que tampoco la oferta en un punto supere a la demanda real en ese momento. De ahí la complejidad de la gestión eléctrica y la importancia de “electricidades estables”.
Hidroeléctricas
En la vuelta a la normalidad del suministro, que a primeras horas de la madrugada del martes alcanzó ya al 90% del mercado eléctrico español, han desempeñado un papel esencial tanto las centrales hidroeléctricas como las plantas de ciclo combinado. Castillla-La Mancha es la séptima comunidad en generación de energía de origen hidroeléctrico.
Centrales nucleares
El apagón ocurrido a las 12.33 del lunes 28 tuvo un efecto inmediato sobre la actividad de las centrales nucleares españolas, de las que solo tres reactores -entre ellos uno de Almaraz- se encontraban en ese momento en funcionamiento. El Consejo de Seguridad Nuclear informó a las 14,30 del mismo lunes que “los titulares de las centrales nucleares españolas han notificado al Consejo de Seguridad Nuclear (CSN) la declaración de situación de prealerta de emergencia –según sus Planes de Emergencia Interior (PEI)-, debido a la pérdida de suministro eléctrico exterior. Este suceso no ha tenido impacto en los trabajadores, el público o el medioambiente.
Ante esta situación imprevista (pérdida de suministro eléctrico exterior de todo el parque nuclear), los reactores de las centrales que estaban en funcionamiento (Almaraz II, Ascó I y II, Vandellós II) han parado automáticamente -de acuerdo a su diseño- y sus generadores diésel de salvaguardias han arrancado y mantienen las centrales en condición segura. En el caso de la central nuclear de Trillo, en parada de recarga programa, en todo momento se ha encontrado en situación segura, según ha comunidad el propio Consejo de Seguridad Nuclear.
Central de Trillo
Por su parte, la Central nuclear Trillo (Guadalajara), parada por recarga de combustible y también en prealerta, continúa en situación segura, alimentada eléctricamente desde sus generadores diésel”.
Según anunciaba Foro Nuclear, “tras su desconexión de la red eléctrica, el 24 de marzo ha comenzado la 37ª recarga de la central nuclear de Trillo (Guadalajara). En esta parada, explican desde la planta, se han incorporado más de 1.000 trabajadores adicionales a la plantilla habitual de unas 40 empresas colaboradoras especializadas.
Durante los 33 días que durará la recarga de la central nuclear de Trillo se realizarán, entre otras actividades, la renovación de los elementos combustibles, la ejecución de pruebas requeridas por las especificaciones de funcionamiento y la revisión o prueba de instalaciones, equipos y componentes necesarias para asegurar el correcto funcionamiento de la planta en el siguiente ciclo de operación.
El programa de la 37ª recarga, añaden desde la central, “contempla la ejecución de 14.500 órdenes de trabajo entre las que destacan los trabajos en las bombas de refrigeración del circuito primario, inspección de la vasija, prueba de presión del recinto de contención o revisión de la turbina de baja presión. Además, se implantarán 16 modificaciones de diseño destinadas a mejorar las instalaciones adaptándolas a los nuevos requisitos industriales, continuar con la actualización y renovación tecnológica de la instalación y a potenciar la fiabilidad y seguridad de la planta”.
Trillo suministra el 3% de la demanda eléctrica anual de toda España. Durante 2024, registró una producción de energía eléctrica bruta de 7.676 GWh, lo que ha evitado la emisión de más de 2,5 millones de toneladas de CO2 a la atmósfera
Problemas de interconexión
Uno de los más graves problemas a los que se enfrenta la seguridad y estabilidad del sistema eléctrico español está en que las interconexiones con Francia y el resto de Europa están en la actualidad muy por debajo de lo recomendable. Incluso reconocido por la propia REE. “La Unión Europea aboga por el desarrollo de un mercado interior de la energía suficientemente interconectado para que la energía pueda circular libremente entre todos los Estados miembros en un sistema más robusto, eficiente y descarbonizado. En este sentido, el Consejo Europeo estableció como objetivo a los países miembros, alcanzar un nivel de interconexión de al menos el 10% en 2025 y del 15% en 2030, con el resto de la Unión Europea.
En la actualidad el sistema eléctrico español está conectado con los sistemas de Francia, Portugal, Andorra y Marruecos. Concretamente, nuestra interconexión con Francia es la puerta de conexión de la Península Ibérica con el resto de Europa. La capacidad de intercambio de esta interconexión ronda los 3 GW, lo que representa un bajo nivel de interconexión para la península. El nivel de interconexión internacional se calcula comparando la capacidad de intercambio con otros países con la capacidad de generación en nuestro sistema”. El ratio de interconexión actual del mercado español con los sistemas europeos a través de Francia es del 2%.
Lectura obligada
Un muy interesante documento editado por la propia REE bajo el título de “Criterios de Ajuste y Coordinación de Protecciones en la red peninsular de Alta Tensión de Transporte y Distribución” se explican con gran detalle y análisis técnico cómo se garantiza el suministro eléctrico en el mercado español.
https://www.ree.es/sites/default/files/14_OPERACION/Documentos/protecciones-red-peninsular-2017.pdf